Spherical Splines for Scattered Data
نویسندگان
چکیده
We study properties of spherical Bernstein-Bézier splines. Algorithms for practical implementation of the global splines are presented for a homogeneous case as well as a non-homogeneous. Error bounds are derived for the global splines in terms of Sobolev type spherical semi-norms. Multiple star technique is studied for the minimal energy interpolation problem. Numerical summary supporting theoretical considerations is provided. Index words: Spherical splines, Interpolation-on-the-sphere Spherical Splines for Scattered Data Fitting
منابع مشابه
Volume Data Interpolation using Tensor Products of Spherical and Radial Splines
Trivariate splines solve a special case of scattered data interpolation problem in the volume bounded by two concentric spheres. A triangulation ∆ of the unit sphere S is constructed based on the vertex set V. Given a partition P of the interval [1, R], let Sτ×ρ σ×δ be the space of the spherical splines of degree σ and smoothness τ over ∆ tensored with the univariate radial splines of degree δ ...
متن کاملA Comparison of Thin Plate and Spherical Splines with Multiple Regression
Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...
متن کاملFitting Scattered Data on Sphere-like Surfaces Using Spherical Splines
Spaces of polynomial splines deened on planar triangulations are very useful tools for tting scattered data in the plane. Recently, 4, 5], using homogeneous polynomials, we have developed analogous spline spaces deened on triangulations on the sphere and on sphere-like surfaces. Using these spaces, it is possible to construct analogs of many of the classical interpolation and tting methods. Her...
متن کاملOn the Approximation Order of Splines on Spherical Triangulations
Bounds are provided on how well functions in Sobolev spaces on the sphere can be approximated by spherical splines, where a spherical spline of degree d is a C r function whose pieces are the restrictions of homogoneous polynomials of degree d to the sphere. The bounds are expressed in terms of appropriate seminorms deened with the help of radial projection, and are obtained using appropriate q...
متن کاملFitting Scattered Data on Sphere - LikeSurfaces using Spherical
Spaces of polynomial splines deened on planar triangulations are very useful tools for tting scattered data in the plane. Recently, 4, 5], using homogeneous polynomials, we have developed analogous spline spaces deened on triangulations on the sphere and on sphere-like surfaces. Using these spaces, it is possible to construct analogs of many of the classical interpolation and tting methods. Her...
متن کامل